Procedure for the calculation of deflection to EC2

1. Calculate $E_{c,ef}$:

$$E_{c,ef} = E_{cm} / (1 + \phi)$$

Where:

 ϕ = creep coefficient from table (p154 of Mosley & Bungey) $E_{cm} = 9.5 (f_{ck} + 8)^{1/3}$

2. Calculate the modular ratio, m

$$m = E_s / E_{c,ef}$$

3. Calculate the uncracked section properties:

Depth to the neutral axis, x_u :

$$x_u = (Area moments) / (Area)$$

Where:

Area moments =
$$(m-1)A_{sc}d' + (m-1)A_{s}d + bh^{2}/2$$

Area =
$$(m-1)A_{sc} + (m-1)A_s + bh$$

The uncracked second moment of area, I_u :

$$I_u = I_{u.conc} + I_{u.asc} + I_{u.as}$$

Where:

$$I_{u,conc} = bh^3 / 12 + bh(x_u - h / 2)^2$$

$$I_{u, asc} = (m-1)A_{sc}(x_u - d')^2$$

$$I_{u,as} = (m-1)A_s(d-x_u)^2$$

4. Calculate the cracking moment M_{cr} :

$$M_{cr} = f_{ct} I_u / (h - x_u)$$

5. Calculate the stress in the tension steel just as the beam cracks, f_{sr} :

$$f_{sr} = m M_{cr} (d - x_u) / I_u$$

6. Calculate the cracked section properties:

Depth to the neutral axis, x_c :

$$x_c = [-b_{ea} + (b_{ea} - 4ac)^{0.5}]/2a$$

Where:
$$a = b/2$$

$$b_{eq} = (m-1)A_{sc} + mA_s$$

$$c = -[(m-1)A_{sc}d' + mA_sd]$$

The cracked second moment of area, I_c :

$$I_c = I_{c,conc} + I_{c,asc} + I_{c,as}$$

Where:
$$I_{c,conc} = bx_c^3/3$$

$$I_{c, asc} = (m-1)A_{sc}(x_c - d')^2$$

$$I_{c,as} = mA_s(d - x_c)^2$$

7. Calculate the maximum stress in the tension steel in the cracked section, f_s :

$$f_s = m M_{max} (d - x_c) / I_c$$

Where:
$$M_{max} = w_s l^2 / 8$$

 w_s = total service load on the beam

8. Calculate the tension stiffening factor, ξ :

$$\xi = 1 - \beta_1 \beta_2 (f_{sr}/f_s)^2$$

Where:
$$\beta_l = \text{bond coefficient}$$

= 1 for deformed bars = 0.5 for plain bars

Where:
$$\beta_2 = \text{load duration factor}$$

= 1 for short term loads

= 0.5 for sustained or cyclic loads

9. Calculate the final deflection, δ_{fin} , which must be < span / 250:

$$\delta_{fin} = \xi \, \delta_c + (1 - \xi) \, \delta_u$$

Where:
$$\delta_u = 5 w_s t^4 / [384 E_{c,ef} I_u]$$

$$\delta_c = 5 w_s l^4 / [384 E_{c,ef} I_c]$$

